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wCalculations fo -arge Markovian finite source, finite repair

capacity two-echelon repairable item inventory models are shown to

It be feasible using the randomization technique and a truncated state
Nspace approach. More complex models (involving transportation pipe-

lines, multiple item types and additional echelon levels) are also
considered.

. 1. INTRODUCTION

Let {X(t), t - 01 be a continuous-time time-homogeneous Markov

process (CTMP) on a finite state space S = {l,2,...,m} . All such

Markov processes can be characterized by an initial distribution 71(0.'

and an infinitesimal generator
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The q ij's are the transition rates. The infinitesimal generator Q

seems to be the most natural way to describe the stochastic nature of

continuous time Markov models with denumerable state spaces. The state

probability vector at time t is denoted Tr(t) = Cr(t), 72(t),

SM(t)) ,where rs (t) = PCX(t) = s) ,s 6 S . These transient probabil-mQ

ities satisfy the Kolmogorov forward equation

This is an initial value system with Tr(0) given. (See [1,7,14] for

more background on Markov processes.) It is apparent that for processes

with large state spaces, we need to solve very large systems of differ-

ential equations. For example, a two-base, one-depot, single-item type,

two-echelon system with 24 units at each base and two spare units at the

depot has a state space of 106,875 possible states, requiring the

solution of 106,874 simultaneous, linear, first-order differential

'. equations in 106,874 unknowns.

This paper preseacs a method for solving Equation (1) for certain

models with large state spaces: the randomization numerical technique

is used to solve a truncated version of Equation (1). This makes it

possible to calculate measures of interest for systems which are even

too large to be handled by applying the efficient randomization technique

to the full state space. This then, would allow the modeling of such

systems as an aircraft wing, with three squadrons and two echelons of

supply and repair, or a fleet of gas turbine engine ships with both ship-

*].. board and shore repair capability. ( .

2~ _j
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The paper is structured as follows: The randomization algorithm
)

is reviewed in Section 2. Multi-echelon repairable item systems are

discussed in Section 3; the primary goal of this paper is to investi-

gate the transient behavior of such systems, however they also provide

good examples for illustrating the general truncation approach. The

full state space of a particular multi-echelon system is described

in Section 4. The truncated state space is given in Section 5.

The problem of determining a good level of truncation is discussed

in Section 6. Some numerical results are given in Section 7. More

complex models are discussed in Section 8; these include systems

with transportation delays, multiple items and higher echelons.

Section 9 contains conclusions. This paper extends the earlier work

of Gross and Miller [5].

2. THE RANDOMIZATION ALGORITHM

Any Markov process X on a finite state space can be represented

as a discrete time Markov chain (the uniformized embedded chain) "ran-

domized" by a Poisson process. Define

P = Q/A + I , where A = max qi (2)ics

and I is the identity matrix; P is a stochastic matrix. Let

{Y nn = 0,1,2,...} be a Markov chain on S with transition matrix P

and initial distribution 1(0) . Let {N(t), t > 0} be a Poisson

process with rate A which is independent of {Y n n = 0,1,2,...}.

Then {YN(t)' t ) 0} is a Markov process with generator Q and

initial distribution a(O) and hence is probabilistically identical

to {X(t), t , 0} This construction makes it possible to compute

-3--
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transient probabilities of a Markov process with generator Q from

transient prob ilities of a Markov chain Y with transition maxtrix

P and a Poisson process N with rate A . The transient probabil-

ities of Y are denoted 4_(n) = &41 (n), 2 (n), ... , m(n)) , where

Os(n) = P(Yn=S) , s 6 S . The randomization formula is

CO

PCX(t) = s) = P PX(t)=s I N(t)=n)PCN(t) = n)

n=0

r P(Yn = s)PCN(t) = n)
n=0

or equivalently,

r(t) = ,(n) e-At (At)n (3)

n=0

See Gross and Miller [4] for additional discussion and details. (Equa-

tion (3) can also be found in ginlar [1, p. 259] and Keilson [10, Eqn. 2.1.5].)

The infinite series in Equation (3) must be truncated for computa-

tional purposes. Let

T(E,t) =min k: e n > - E (4)

n=0

where e equals an acceptable error (specified by the user). The compu-

tational version of Equation (3) is

T(,t) -At (At)n (5)
7 E(t) = X pne St

n=0 -

Truncation of the infinite series involves a probability loss of at most

C ; thus all probabilities (of states or subsets of states) will have an

error between -C and 0. Note that the randomization formula (5) re-

duces the calculation of transient probabilities of a Markov process to

-4-
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those of a Markov chain and underlying Poisson process, both of which

are more amenable to exact numerical evaluation.

The I's are computed recursively using the relation from stan-

dard Markov chain theory;

j(0) = 2(0) ; (n+l) = t(n)P , n > 0 (6)

(Note that Equation (6) involves only nonnegative numbers, a fact that

contributes to numerical stability of the algorithm.) The matrix P is

usually sparse and thus the above matrix multiplication should be per-

formed by an appropriate algorithm. Such a multiplication algorithm

(called SERT) is described by Gross and Miller [4]. The number of

'- . operations in this algorithm is proportional to the sum of the number

of states and the number of transitions.

In short, the standard randomization computational algorithm com-

putes A and P from the generator Q using (2). It computes the

truncation point T(E,t) from (4), then the J(n)'s using (6) recur-

sively, accumulating in Equation (5) to give i(t)

Gross and Miller [5] have computed transient probabilities for

Markov orocess models of multi-echelon inventory systems with 20,000

states and 1 00,000 transitions using the randomization algorithm.

4 Melamed and Yadin[I1] have applied the method to queuing networks with

a large number of states. Miller [12] has adapted the randomization

a".. algorithm to efficiently handle certain stiff systems which arise in the

reliability analysis of fault-tolerant systems.

There are other numerical approaches to the solution of the

Kolmogorov equation (1) which we will not consider. Two general ap-

proaches are: (i) numerical integration techniques such as Runge-Kutta,

-5-
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predictor-corrector, etc.; and (ii) exponentiation [21(t) = 2[0()e QtI by

computing the spectrum, computing the Taylor series, or other means.

The randomization technique has a distinct advantage over these approaches

in that a bound on the global error can be set by the user, and it is

achieved. (The only other source of error is the influence of rounding

and truncations by the machine performing the calculations; by noting

that the randomization algorithm mainly involves multiplication and

addition of positive numbers, Grassmann [31 has bounded this error.)

Furthermore, Grassmann [21 has shown empirically that randomization is

more efficient for some queuing systems.

3. MULTI-ECHELON REPAIRABLE ITEM SYSTEMS

Multi-echelon repairable item provisioning systems are gener-

alizations of the classic machine repair model. We consider a system

4 consisting of two bases and a depot. Each base has a certain number

of "machines" (or key replaceable components of "machines") assigned

to it and a certain desired number of these which should be operating.

Machines fail (independently of each other) after being operated for

an exponentially distributed length of time. There are repair shops

at each base and at the depot. When a machine fails it has a certain

probability of going to the base repair shop for repair; otherwise it

goes to the depot repair shop. Each repair shop has a certain number

of repair channels. Repair times are exponentially distributed. If there

are more machines requiring repair than repair channels at a given repair

shop, a queue forms. The depot repair shop stocks spare machines which

are used on a one-to-one ordering basis to replace failed machines

coming from the bases. If the depot spares pooi is empty when a

-6-
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replacement is required, a backorder is created which will be filled when

repair is completed on one of the items in depot repair. If both bases are

awaiting backorders, a repaired item is sent to the base with the maxi-

mum depot backorders (ties are broken by flipping a fair coin). When

neither base is awaiting a backorder, a machine completing depot repair

is placed in the depot spares pool. Thus any given machine may be in

any of six states (or equivalently-at any of six nodes in a "network"):

failed and in base repair shop at either base (BR1,BR2); failed and in

depot repair shop (DR); operational and at either base (BUI,BU2); opera-

tional and in the depot spares pool (DU). These six states and the

possible transitions a machine can make between them are illustrated

in Figure 1. The parameters and variables of the system are described

in Table 1. Note that transportation times from bases to base repair

shops and from bases to depot repair shop are assumed to be negligible.

We consider adding transportation nodes to the network in Section 8.

We shall introduce the following classification symbology for

these systems: (#bases, #levels of repair, #levels of supply). So the

system of Figure 1 is considered a (2,2,2) system, since there are two

bases, repair facilities at both base and depot levels, and spares

stockage at both base and depot levels.

Steady-state models and behavior of multi-echelon inventory

systems are presented by Sherbrooke [15] and Muckstadt [13]. In these

models, they assume an "infinit2" population of machines, so that the

system failure rate is constant, regardless of the number of machines

actually in operation (state-independent failure rate). Further, they

also assume that "ample" repair facilities exist so that failed items

-7-
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Base 1

I BR1 - BUl I

Depot

I I

I DR

I DU -

Base 2

I - I - - -

I BR2 +-+* BU2 I
_ _I _ _ I

Figure 1. General schematic for
a two-base multi-echelon repair-
able item system.

never queue in the .epair shops but go immediately into service. A method

for computing approximate transient performance measures of the above

multi-echelon system is presented by Hillestad and Hillestad and Carillo

[8,9], again with the limiting assumptions of state-independent failure

rate and ample service. These two assumptions make it considerably

easier to obtain both steady-state and transient results. Gross and

Miller [5] compute exact transient probabilities using the randomization

algorithm, explicitly accounting for state dependent failure rates and

queueing at the repair facilities. For further background on multi-echelon

inventory systems, see the above references.

-8-
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TABLE 1

PARAMETERS AND VARIABLES OF MULTI-ECHELON SYSTEM

Symbol Definition

a. Parameters

BUi Denotes network node: Base i operational (working and spares)
units

BRi Denotes network node: Base i repair facility

DU Denotes network node: depot spares

DR Denotes network node: depot repair facility

BSi Allocation of total stock to Base i (operating machines plus
spares), i = 1,2

MSi Desired number of working machines at Base i

BCi Number of repair channels in repair shop at Base i

* c ( Probability machine failing at Base i is base repairable

*X. Mean failure rate, Base i items
i

1. Mean repair rate, Base i items

DS Number of depot spares

DC Number of depot repair channels

W D Mean depot repair rate

b. Variables

#BUi Number of operational units currently at Base i

#BRi Number of units currently in or awaiting Base i repair

#DU Number of spares currently available at depot

#DR Number of units currently in or awaiting depot repair

. #DBi Number of depot backorders from Base i

9
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4. STATE SPACE DESCRIPTIONS OF (2,2,2) SYSTEMS

Let us define the state of the system as the number of machines

at each node:

= (#BUl, #BRl,#BU2,#BR2,#DR,#DU)

The number of backorders at the depot from Bases 1 and 2, respectively.

are:

#DBl = BSl - (#BUl + #BRl)

#DB2 = BS2 - (#BU2 + #BR2)

where, as given in Table 1, BSl and BS2 are the allocation of total

stock to Bases 1 and 2, respectively.

In general, the state space appears to have six dimensions, but

because of one-for-one ordering and conservation of the total number of

items in the system, the dimensionality of the state space can actually

be reduced.

The description of the state space breaks into two situations:

(i) no depot spares available, and (ii) some depot spares available.

Thus we break S into two parts, namely

S = s 0 u S+

where

S = states with depleted depot spares pool

S+ = states with nondepleted depot spares pool.

First consider S The state of the system can be described

with four numbers:

(#DB1,#BRI,#DB2,#BR2)

- 10 -
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since here #DU = 0 , and thus

#BUl = BSl - #DBl - #BRl

- #BU2 = BS2 - #DB2 - #BR2

#DR = DS + #DBl + #DB2

The feasible states of S are subject to two constraints:

#DBl + #BRl < BS1

#DB2 + #BR2 < BS2

Therefore S can be represented as a Cartesian product,

S O = T 1 x T2 ,

,. where

T = {(#DBI,#BRl): #DB1 + #BR1 < BSI}

TO {(#DB2,#BR2): #DB2 + #BR2 < BS2}

Figure 2 shows a schematic of the set of states of S The notation
0*

I is used because the spaces T 1 and T2 are triangular. The number

of points in T 1 and T 2 are

IrT = (BSl+l)(BS1+2)
2

anid

IT I = (BS2+I)(BS2+2)
2

. tivlv, and the number of states in S is
0

I - (BSI+I)(BSI+2)(BS2+I)(BS2+2)
2'10"

Now, let us consider the states where the spares pool at the depot

is not empty, S + In this case the state of the system can be described

b; three nutbers:

(i!BR1,/JBR2,JDU)

,.. - 1i -

o'.'. .. . ~~ ~~~. . - . •. - . . .. .. , • . . , , , . , •
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/#BRI #BR2

0 1 2 3 4 0 1 2 3 4 5

1 . . . .* 1 . . .

#DB1 2 " X #DB2 2 .

3 " 3 . • "

4. 4 ..

T1 T2

Figure 2. An example of state space S0  describing indi-

vidual bases; here BS1 = 4 and BS2 = 5.

*. with constraints on these given by

#BRl < BSl

#BR2 < BS2

0 < #DU < DS

We can condition on the value of #DU to get S+ as follows.

Let

S = SU 2US2 . U SDS

where S. consists of states with exactly i machines in the depot

spares pool. Note that each S. is a rectangle and its size is

I I (BSl+l)(BS2+l)

Thus

-+-= (BSl+l)(BS2+I)DS

" V and the total number of states is

. '  (BSI+I)(BSI+2)(BS2+I)(BS2+2)
S 4 + (BSl+1)(BS2±l)JS .(7)' 4

- 12-
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So ecan decrb the eniesaespace as

S =TX T 2  DkS Il

Examples of state space sizes are given in Table 2.

In order to compute the probability distribution for all the

states at any continuous time point, p5 (t) Cs E S , t E [0,cn)) , we

use the randomization method to provide the computational formulas

and a technique called SERT (see [4]1) which takes advantage of a

sparse Q matrix as computational machinery. There are two ways to com-

pute the probability distribution for the CTMP when using the SURT

technique:

(i) Table look-up

(ii) Algorithmic approach.

When using the table look-up, we construct all the target and

rate vectors and store them. Any time that an event occurs, the algo-

rithm goes through these vectors and gets the necessary information to

compute the next discrete time probability vector. This procedure has

the undesirable feature that a huge amount of the main memory is needed

(in fact the memory needed is approximately twice the product of the number

of different event types and the size of the state space). Consequently,

we are limited in the size of problem that we are ablec to run.

When using the algorithmic approach, we calculate the transition

rates and the target states each time an event of the underlying Poisson

process occurs. Vhile this algorithmic approach does not consume the

same vast amounts of memory space as the table look-up method, the algo-

rithmic approach becomes quite uneconomical with respect to CPU time.

-13 -
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TABLE 2

SIZE OF THE STATE SPACES OF (2,2,2) SYSTEMS
FOR SELECTED VALUES OF BSl, BS2, AND DS

BSI BS2 DS IS01 + S+ I = isi

2 2 2 36 18 54

4 4 2 225 50 275

6 6 2 784 98 882

8 8 2 2025 162 2187

10 10 2 4356 242 4598

12 12 2 8281 338 8619

4 18 18 2 36100 722 36822

24 24 2 105625 1250 106875

It becomes clear that for this class of problem (Markovian

with large state-space), if we want to get exact solutions (within a

prespecified error tolerance) using the existing tools, we confront

either the computer's main memory restrictions, or the high cost of CPU

time.

The question that naturally comes up is: Can we find another way

to estimate (within a prespecified error tolerance) measures of interest

such as the availability of a desired number of machines at time t ?

It would be reasonable to expect that, for a system that

initially starts at full strength (all machines operational), the prob-

ability will be concentrated among only a relatively small part of the
a

whole state space during a mission period (or period of interest), if

the traffic intensities are low and the mission periods are relatively

short. In other words, we should be able to truncate the state space

and consider only those states among which we believe almost all the

probability to be distributed.

- 14 -
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The truncated states, on the other hand, are "lumped" into one

or more states, which can be treated as absorbing states. If the prob-

ability of visiting any of those truncated states (probability of being

absorbed) is negligible during the mission period, then the analytical

measures estimated are almost exact. Further, we will know the addi-

tional error introduced in our measures, as this will be the absorption

probability. However, there are two major questions that must be

addressed: How will we truncate the state space? In which cases will the

truncation procedure perform satisfactorily?

5. TRUNCATED STATE-SPACE APPROACH

Figure 3 shows a schematic of the state space representation for

a (2,2,2) system. Recall that

S 2 S 2 y Si = S 0uS+ .

Assume that we truncate the state space as shown in Table 3. Then the

" truncated state space will look like that shown in Figure 4. The truncated

TABLE 3

TRUNCATION OF STATE SPACE

For Variable In Portion of State Space Truncated Beyond

#DBl T TDB1

1#BRI TI1 TBRI

#DB2 T 2  TDB2

#BR2 T 2  TBR2

#BRI S+ TBRI'

#BR2 S+ TBR2'

i.
-15-
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#BRI. #BR2 #BR2

0 1 2 3 0 1 2 3 4 0 1 2 3 4

0 . . . . 0 . *. . 0 . . .

1 • * • . . . . DS 1 . . . . .

#DB1 #DB2*+ 2•.2 • 2 + • • i 1 2. . .

3. 3 . 3 . . . . .4.

Figure 3. Full state-space representation for a prob-
lem where BSI = 3 and BS2 = 4.

#BR1

0 2 TBR 0 1BR BR2
0 1 0 T DS 0 .... S+

#DB 1 1 x *DB2 1  2 +J#BR 1  .

2 . . . 2 . . . .

TBO 0 0
1 BO SBRl

'2  +

Figure 4. Truncated state space, where TDBI 1,
, TBR1 = 2, TDB2 = 2, TBR2 = 2, T3Rl' = 2,

BR BO BR
TBR2' = 3. The states T1 , T1 , T2
T-.B0 8 BR2 1'R'I2
2' + , S are absorbing states.

states are lumped into six absorbing states. Whenever there is a

transition from the remaining state space into a truncated state, it will
I

be considered as a transition to a specific (absorbing) state which,

once visited by the process, will never be left. The size of the state

space (excluding the absorbing states) is now reduced to

S = (TDBI+I)'(TBR+)-(TDB2+I)'(TBR2+I) + DS-(TBR1'+l)'(TBR2'+l)

-16-
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The benefits of truncating the state space are readily apparent.

First, we decrease significantly the amount of computer memory required

(e.g., we need to consider only a fraction of the whole state space).

Secondly, by this method we are able to calculate the total absorbed

probability or, in other words, the amount of total error added because

of absorption. Thirdly, CPU time for the execution of the algorithm

is reduced because it depends approximately linearly on the size of

the state space. This approach can also be utilized when treating

certain infinite state-space CTMP's, for example M/M/c/h queues or

open queuing networks.

6. ESTIMATION OF INITIAL TRUNCATION POINTS

Now that the algorithm is established, the only step needed before

it can be implemented is the selection of the truncation points. To do

this, we look at our (2,2,2) system as three independent M/M/l/-o queues,

the traffic intensitiEs of which are made equal to the traffic intensities

of the three stations of our original problem. We define traffic intensi-

ties for our state-dependent original problem as the maximum possible load,

namely, XiMSici./Wi BCi for the bases and i X iMSi(1-ci)/DDC for the

depot. We mention here that three independent queues are not in general a

good approximation for our true multi-echelon queueing network, but will

serve our purpose for providing reasonable values for initial truncation

points, and is used only for this purpose. Once the state space is trun-

cated, randomization SERT is applied to the original multi-echelon network.

The question that now arises is: What is the smallest n , such that

Prtan M/M/I/- queue visits state n or higher during [O,tm] 6,

- 17 -
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where t is the mission time. The n estimated this way will qualifym

as the appropriate initial truncation point. As a side observation,

Pr{an M/M/I/ visits n or higher during [0,t m]}

= Pr{an M/M/l/n visits n during [0,t]}

Using randomization SERT, we calculate the absorbing probabilities

as functions of time and truncation point for different traffic inten-

sities, ranging from .2 up to .7 (see the appendix). It turns out

that as the truncation point n increases, the absorbing probability

as a function of time becomes linear, with slope equal to 1 (on a Zn-Zn

scale) and intercept dependent on the traffic intensity and the truncation

point n .

The graphs calculated for M/M/l/n queues as given in the

appendix are based on a randomization cut-off error, 6 , 
of 10- 6

These can be used to satisfactorily estimate truncation points even

for systems with more than one server, provided that the "match" of

traffic intensities is maintained, that is, the single-server service

rate is set equal to the sum of the multiple servers service rates.

If the traffic intensities are relatively low (which they often are in

multi-echelon repairable inventory systems), and the mission period short

(tm small), then the truncation technique should work in the sense that

the truncation points decrease the number of states to be considered to

a dimension that the computer memory can handle (in Section 9, we discuss

this further). Otherwise, system approximation techniques such as de-

composition into independent queues or approximation by Jackson networks,

or simulation. Cross, Miller, and Plastiras [6] give a comparison of

randomization and simulation, including CPU times for comparable accuracies.

- 18a -
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Their general conclusion was that for smaller state spaces and for

higher precision, randomization is more economical. For example, to

obtain a precision of ±1% with 99% confidence using simulation turned

out to require three timus as much CPU time as randomization for a

15000-state problem.

.
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7. EXAMPLES

We present two examples, one of a (2,2,2) system and another

of a (3,2,2) system, which show the effectiveness of the truncation

approach.

* Example 1.

Let us consider the (2,2,2) system shown in Figure 5. The

full state space for this problem is 77,234 states. Using the table

look-up algorithm, it is impossible to handle this problem on the

VAX 11/780 system without truncation. We desire availability

measures, where BS1

Availability at time t for Base i ! A.(t) p j,i(t)

j=MS1

where pj(t) is the probability that j machines are working at

Base i at time t . We also desire the total probability of absorption

during the mission time t (which for this example equals 30) to be less
m

than .015.

To evaluate the initial truncation points, for Base 1 the

traffic intensity p1  is

ctPIX1MS1 _ .6(.15)20 0.4

1 BCI 1  4.5

When we calculate the graphs of the absorbing probabilities for differ-

ent cases of traffic intensity p , we assume X = p and P = I (we

refer to I = 1 as the "nominal" value). In general, 1i is not 1 and we

must adjust our time scale accordingly to match event rates. The absorbing

probabilities at time t for an M/M/l system with traffic intensity

P = kX/ku is the same as the absorbing probability at time kt for a

-19-
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BR1 Base 1

1 server a F20 operating 2 spares

4.5 X = 0.15 DR DU

.8 1 server 0 2 spares

BR2 Base 2 / = 3 .33

1 server 20 operating 2 spares1aserver 12-. 2

P2 = 0.5 A2 = 0.05

Figure 5. (2,2,2) example.

system with p = A/p , since these two systems yield the same expected

number of events over their respective time intervals, namely, t(kk + kj) =

(kt)(X + p) . Thus, while we are interested in a mission time of 30, our P

is 4.5, not 1, so k = 4.5 and the "equivalent" mission time is 4.5(30) =

135 . Using our graphs in the appendix, given that p = 0.4 , we wish to

find the smallest n , such that Pr{an M/M/I/n visits n in time period

[0,135]} < .005 . We obtain an n of 9, so that TBR1 = 9 , and TBRl' = 9

will serve as our initial truncation points for the state variable #BRI

for the S and S+ portions of the state space, respectively.

Similarly, at Base 2 the traffic intensity P2 is:

2X2 M S 2  .2(.05)20

2 BC2p 2  .5

Now here the event rate is 1/2 x nominal (since 112 = .5); therefore, we

look at the graphs and tables where p = .4 and seek the smallest

n such that Pr{an M/M/I/n visits n in time period [0,15]} < .005

We obtain n = 6 ; thus TBR2 = 6 , and TBR2' = 6 will serve as our

initial truncation points for the state variable #BR2 for the

S and S+ portion, of the ;tate space, respectively.

- 20 -
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We now consider the depot. The traffic intensity PD is

= (I-))XIMS1 + (1-a22)X 2
M S2 .4(.15)20 + .8(.05)20 = 0.6

D DClID  3.333

Here, the rates are 3.333 x nominal (because p = 3.333)

therefore, we look at the tables and graphs where p = .6 , and pick

the smallest n such that

Pr{an M/M/l/n visits n in time period [0,100]} < .005

We obtain n = 14 , which serves as the truncation point for the number

of machines undergoing repair in the repair facility at the depot.

Our aim is to fix truncation points for the number of machines that

the depot owes to each base. Given that DS = 2 , the total number

of machines owed by the depot to the bases is 14- 2 = 12. Now,

we need to divide this number into two numbers, which will serve as

the truncation points for the depot backorders in Base 1 and Base 2,

respectively. One way to "allocate" is to divide the total according

to the ratio of the failure rates of the bases to the depot. In our

example we divide the 12 machines as follows. The failure rate to

depot from Base I is .4 x 20 x .15 = 1.2 and from Base 2 is

.8 x 20 x .05 = 0.8 . The total is 2.0 and the allocation then is

TDB1 = (1.2/2) (12) "- 7 and TDB2 = (0.8/2) (12) 5

The truncated state sp-ro now looks like that shown in Figure 6.

In Table 4 we can see the number of states considered for the

truncated state space, and their respective absorbing probabilities.

The entries in the first row correspond for the case where the trun-

cation points are the same as in Figure 6. After examining the

absorbing probabilities we find the probability of T relatively
2

-21-,.,:- 2

h -.. •



T-488a

a'N

('4

('44

. N 0

C u(4~

(NJ C1

(' Ln CCO

C4I

-1

cC

o 22



T- 48 8a

-4 L I r- -i cn
C'4 cn m~ 04 r.

P.-4 -i Ir cn L

C~ 0 C'4 C~

0000 0 00

tnt 0 C) I C 1~ LfCl
-40 C) C)i 0

0 0 Z -4 1~ 01%

00- C 0 100 0

W 0 C-4 I 4 O i
c~ 0-q C:) 1 0 1 0 CO

4~J CO~'J C'J CN
0 0 C)-40 -T 0 00

00 al - 0 00
0 C I C) 1I

rI I ~
-Q - 4 C4 cI 04 I CN.

0 00 1 . 0 0" C

0" C4 I In U-) C
00 -4 CD C 0 C CD

CD C-0 I 0D I 0D0

o .,1 00 0 Z 1 10 0

0 00 r - 1 I I -4 C'I
cn -c NJ l C )~N C4 CD

0 I 0 0 0ri -
0D0C 0 00C

(c' W In gZ CO a'
.0 4 A NC ID 1 \0 Io 00

0 ~ 0 0- D C 0 0D
00 0 0

00230



T-488a

high. Since we would like the total absorbed probability to be less
.

than .01, we increase TDB2 from 5 to 6, and rerun the algorithm with the

results shown in the second row of Table 4.

One might ask whether the M/M/1/- approximation can help in

estimating truncation points for problems where there is more than one

server in the repair shop. To show that it can, Rows 3 and 4 in Table 4

correspond to two additional runs in which we retain the truncation points

of the Row 2 example based on the M/M/I/, but wnere we try two and then

three service channels at each base repair facility, reducing the service

'A

rate of each of the multiple channels appropriately to yield an equivalent

service rate. Row 5 lists results of an additional run where the number

of service channels at Base 1 and Base 2 repair are 3 (the Row 4 case),

but where TBR2' has been increased to 7 in order to reduce the absorption

'error closer to the desired .01 value.

Example 2.

We now consider a (3,2,2) system as shown in Figure 7. The full

state space size can be found by generalizing the formula for the two base

case. Here we have the Cartesian product of three triangles (one corres-

ponding to each base) for the S part of the state space, and the union

of DS cubes for the S+ part of the state space. Hence,

ISI = (BSI+I) x (BSI+2) x (BS2+I) x (BS2+2) x (BS3+l) x (BS3+2)/8

+ DS x (BSl+l) x (BS2+I) x (BS3+l)

Using the above formula for this example, the full state space is

43,278,703 states. Going through the same procedure used for the pre-

vious example, we set our initial truncation points using the graphs

given in the appendix and obtain values shown in Figure 8.

- 24 -
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Table 5 lists the number of states of the truncated state space

considered, and the absorbing probabilities. The first row exhibits

results based on the truncation points chosen initially (as shown in

Figure 8). Observe that SBR I  SB+ and + have the higher ab+ + an S hvBtehihr3b

sorbing probabilities. After increasing TBRl' , TBR2' and TBR3'

from 6 to 8, we reran the problem with the results shown in Row 2 of

Table 5 and the total absorbed probability drops below .01.

8. MORE COMPLEX SYSTEMS

We now consider the following three models, which are more complex

variations of the models having two bases and two echelons:

(i) Model with transportation pipelines,

(ii) Model with two types of spares,

(iii) Model with intermediate repair shop (three echelons).

Model with Transportation Pipelines

A schematic of such a system is shown in Figure 9. This model has

two bases, two levels of supply, and two levels of repair, and serves as

a prototype for analyzing transportation pipelines. There is only one

additional characteristic that distinguishes the model of Figure 9 from

the (2,2,2) system previously studied. Failures from base to the

depot enter a single pipeline (denoted by PIN), and repairs of

backordered machines enter either one of two pipelines (denoted by

PlOUT and P2OUT) depending on to which base they are sent. In order

to describe the state space for this model, we will condition on the

number of spares available at the depot:

- 27 -
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-~ (i) Spares available at depot => DU > 0

If spares are available in the depot, then whenever a machine

enters the PIN pipeline, another machine enters either the PIOUT or

the P2OUT pipeline at the same time. The number of backorders for

each base will be at level 0 , so that the total number of machines

allocated to each base (BSi) will be distributed in the [aa] or

[bb] portions of the network. The conditions for #DU > 0 are

#BRl + #BU2 + #PlOUT = BSl

#BR2 + #BU2 + #P2OUT = BS2

#PIN + #DR + #DU = DS

and the total number of states is:

DS(DS+l) x (BSI+I)(BSI+2) x (BS2+I)(BS2+2)
4.,i 2 2 2

(ii) Spares not available in depot => #DU = 0.

For this case,

DS 1#PIN + #DR < BS1 + BS2 + DS

in fact, #PIN + #DR = #DBI + #DB2 + DS (where #DBl, #DB2 are the

numbers of backorders at the depot from Bases I and 2, respectively).

If we let

j = BSI - #DBl

Jm." k = BS2 - #DB2

then the total number of states is:

_(j+l) 2(j+2) x I (k+l) 2(k+2) x [DS+(BSI-j)+(BS2-k)+I]

"""j 0 k=0

- 30 -
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Thus, the total state space size is given by:

DS(DS+) x (BSl+l)(BSl+2) × (BS2+I)(BS2+2)

2 2 2

BSI BS2 I (if+l)(ii+2) (i 2 +)(i 2+2)
S=0 i 2 =0 2 2

X [DS+BS+BS2-i 1-i2 +] .

Examples of state space sizes for the above model are given in Table 6.

Model with Two Types of Units

We show schematically in Figure 10 an example with two different

types of machines or components. This model is the same as the

(2,2,2) prototype except that we now have two types of machines (or

assemblies, say A and B). Given that they are independent components,

we can easily derive the formula for the state space of the model of

Figure 10 as follows:

IS I IBSIA+l) (BSIA+2) x (BS2A+I)(BS2A+2) + DSA(BSlA+l)(BS2A+l)]

(BSIB+I)2(BSlB+2) (BS2B+I) (BS2B+2) + DSB(BSlB+I)(BS2B+I

Table 7 exhibits state space sizes for different sizes of the above

model.

Model with Intermediate Repair Shop
(Three Levels of Supply and Repair

We show in Figure 11 a (4,3,3) system. We let ISi be the

number of spares allocated to intermediate station i #IUi the

number of spares available at intermediate station i , and #1Ri

be the number in or awaiting repair at intermediate station i

- 31 -
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• .- TABLE 6

STATE SPACE SIZES FOR THE MODEL

WITH TRANSPORTATION PIEPLINES

BS1 BS2 DS Number of States

1 1 1 49

2 2 2 508

4 4 2 6,800

6 4 2 17,430

6 5 2 28,812

6 6 2 44,688

8 8 3 229,950

16 12 3 4,933,383

24 18 4 60,916,375

TABLE 7

STATE SPACE SIZES FOR TWO IT EM-TYPE SYSTEM

BS1A BS2A BSlB BS2B DSA DSB Number of States

2 3 2 3 2 2 7,006

2 3 3 4 2 3 17,640

4 4 4 4 2 2 75,625

4 4 6 6 2 2 242,550

4 5 6 7 2 3 441,000

8 8 8 8 2 2 4,782,969

8 8 10 10 2 2 10,055,826
.-
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We now condition on the number of spares available at the depot

(as before, DS represents the number of spares allocated to the depot

and BSi the total number of nachines allocated to Base i).

i) #DU > 0

In this case, we have two independent (2,2,2) models, with

two echelons and two hase. Tbi

IS+I = DS , [(ISl)(BSI+L)(B52+I) + (BSI+I)(BSI+2)(BS2+l)(BS2+2)/4]

x [(IS2)(BS3+l)(BS4+I) + (BS3+1)(Bs3+2)(BS4+1)(BS4+2)/4]

(ii) ;DU = 0 (no spares available at depot) and the depot

owes i IU1 spares and j 1U2 spares.

.,:k2 first focus on the [aa] portion of the network.

(a) 0 < i < ISl

1. #IUl > 0
IS1-I 1BII(S+)IIi

Then we have to consider i=0  (BS+)(BS2+I)(IS1-i)
i =0

states.

2. #IUl = 0

Then BSl + BS2 + IS1 - i machines have to

be allocated to the five stations contained in

area [aa] of Figure 11. So we consider

IS1-2
y. 1 (k+l)(k+2)(Z+l)(Z+2)/4

i=0 k Z

states, where

k = number of machines at Base I

Z = number of machines at Base 2

- 35 -
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and the double sum is conditioned on

o <- k + Z <- BSl + BS2 + 151 -i

o < k <- BSl

0 <-9, < BS2

(b) ISl <i <BS + BS2 +ISj

Here, we know that IIIUl = 0 So the number of

states to be considered is

BSl+BS2+ISl

i=ISl k Z.

where the double sum is conditioned on

o < k +9 Z BSl + BS2 + ISi - i

o < k < BSl

o < Z. < BS2

We are now able to write the formula giving the number of states

of the entire state space:

=S DS x [JSl(BSl+l)(BS2+l) + (BSl+l)(BSl+2)(BS2+l)(BS2+2)/4]

x [IS2(BS3+l) (BS4+l) + (BS3+l) (BS3+2) (BS4+l) (BS4+2) /4]

min(BSI,BSl+BS2+ISl-i) min(BS2,BSI+BS2+ISl-i-k)

-i:i BSl+BS2+ISl k=0

V(k-) (k+2) (Z+1l) 2

L 4

[(BS3+l((BS4+1) (TS2-i)]

min(BS3,BS3+Bs4+iS2-i) min(BS4 ,BS3+BS4+1S2-i-k)
+I

0 i!(13S3+BS4+IS2 k=09.0

L(k+l) (k+2)(7Q+I) (9+2j

-36-
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Table 9 gives some examples for different cases of the above model.

9. CONCLUSIONS

We can see that the truncation technique works for rather large,

single-item, two-echelon Markovian systems. The applicability of the

technique basically depends, for each individual case, on the rates; and

the mission times.

Figure 12 gives an idea of which rates will be acceptable if we

wish to have an M/M/l system probability of "overflowing" a certain

n (= number in svstem) of .005 in 30 tie unito; that is, point:. on eon 'h

contour correspond to points for which n is overflowed in 30 time

units with probability .005. Points below this specific contour give

absorbing probability less than .005 in 30 time units. For instance,

TABLE 9

STATE SPACE SIZE FOR INTERHEDIATE REPAIR SYSTEM

BS1 BS2 IS1 BS3 BS4 IS2 DS Number of States

% 1 1 1 1 1 1 1 689

*"". 2 1 0 2 1 0 1 2,074

2 1 1 2 1 1 1 4,426

2 2 1 2 2 1 1 15,525

5 5 2 5 5 2 2 9,460,802

10 8 3 9 12 2 3 1,573,833,690
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in Example 1, we came up with a Base 1 repair truncation point, TBR1,

of 9. Now, if we still wish to have the system run for 30 time units
~BR

and the absorbing probability for T to be < .005 then, using Figure
1

12, we show that the arrival and failure rates that will suffice are

those below the contour for n = 9 . So according to this figure, our

rates of ",I" = A 1 MS1 = 1.8 and "j" = c1111 = 4.5 will do, because

this point is not above this contour. However, if, for example,

a 1i A 1 = 8 and c 1 1 = 15 , then TBRI = 9 will not do because the

point made up of these rates lies above the n = 9 contour.

This figure can also be used for mission times other than 30 time

units by scaling the rates appropriately. For example, if we are

interested in a mission time equal to 15 time units with .1X1 AMS1 = 1.8

and c1 'l = 4.5 and we desire to know whether TBP. = 7 might be a

good truncation point (so as to allow the probability at absorption

to be less than .005) then, knowing that this is equivalent to a system

with mission time equal to 30, and a 1 S1 Sl 0.9 , c =1  2.25 and

using Figure 12, we see that we are above the contour for n = 7 , and

as a consequence it is not an appropriate truncation point. However,

TBRl = 9 would certainly work here since the point is below that con-

tour. In fact, if a truncation point is satisfactory for a mission

time t , it will certainly be satisfactory for mission times less than

t • The opposite is not necessarily true.

Thus, if one has an idea of the total number of states that can

be handled on a particular computer, using the state space size formulas

[for example, equation (7)] car. give rough ideas of what the truncation

- 39 -
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points must be for the computer to be able to handle the problem.

Using Figure 12 in the manner illustrated above will indicate whether

these truncation points are adequate for the rates of the partic-

ular system under study.

The more complex models reflected in state space sizes given

in Tables 7, 8 and 9 can tax even the truncation technique. Trun-

cation might be feasible for the pipeline models as the state space

does not blow up too rapidly (see Table 7). However, the multi-

machine and intermediate repair types of models, except for perhaps

relatively small systems, generally have state spaces which are too large

for even truncation to handle, and which would have to be analyzed by

other techniques, such as simulation or approximation with simpler

systems. Nevertheless, this truncation technique can handle systems

large enough to model many realistic size problems of the real world.
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